
Extraction Applications and eTariff 1

Docket No. RM01-5-000
Electronic Tariff Filings

Word-To-eTariff Extraction Application

The NOPR in Docket No. RM01-5-000 proposes that all FERC regulated tariffs must be
converted to a new electronic format by a date certain. The current draft eTariff software
provides for two methods to take existing tariffs in an electronic format and converting them to
the proposed electronic tariff format.

 First, the tariff can be cut from the native format and pasted into the eTariff format on a
section-by-section basis. This feature is most efficient for tariffs up to 300 or 400 pages.
 Second, eTariff can import a tariff that has been put into a structured format along with a
database explaining that format. That feature is available from the eTariff menu bar at
<File><MS Word Interface Import>. This feature requires the writing of a software and
organizational format specific extraction program, and is best reserved for longer tariff
conversion projects.

This document explains eTariff’s “MS Word Interface Import” feature and how to take
advantage of this feature to speed-up the tariff conversion process by writing extraction
applications for software and organizational format specific tariff documents.

Extraction Applications and eTariff 2

System Overview

The object of the automated import feature is to speed-up the conversion of tariffs in an
electronic format to the new eTariff format. This eTariff feature requires

a) A tariff in an electronic format that is subject to standard cut and paste features. This is
supplied by the regulated company.

b) An extraction application specifically written for the software format that the electronic
version of the tariff is in, and for the organizational format of the tariff document. This is
written or supplied by the regulated company.

c) A structured Foxpro database and associated Word files created by the extraction
application in the format required by eTariff. This structure is described below.

A diagram of the import process is as follow:

Tariff in Word
or other

Application

Multiple
Word

Documents
Foxpro
Table

Extraction
Program

eTariff System

eTariff Import Flowchart
System Overview

Extraction Applications and eTariff 3

Import Interface Specification

The import data consists of 2 types of files:
 - MS Word format files, 1 for each ‘section’ of a tariff
 - a ‘definition’ file, DBF format, containing data about each MS Word file (above)

All these files must reside in the same directory (folder) when the import process is invoked.

The definition file (table) contains 1 record (row) for each MS word file. Each row in the
definition file holds information regarding a single section of the tariff. The format of the
definition file is as follows:

Field
name

Data
Type

Description

assoc_file C(80) The name of the associated MS Word file (aka, the file containing a
single section)

sect_id N(6) A unique number assigned by the program, used to uniquely identify a
section

parent_id N(6) The sect_id (above) which the current section belongs to. For ‘top
level’ sections this number should be 0

sect_num C(50) The tariff section number. This is not to be confused with the section
ID. This number may be of the x.x.xx.xxx format.

sect_title C(200) The title of the tariff section. Do not include the tariff section ‘number’
as part of the title.

A database file is necessary to guide the eTariff importation software. This database file must of
FoxPro 7.x or greater format. The extraction program requires an ODBC/ADO driver for
FoxPro to interface with the database file. This driver is free and can be downloaded from
Microsoft at: http://msdn.microsoft.com/vfoxpro/downloads/odbc.asp. Information on this driver is
available at: http://support.microsoft.com/?kbid=277772

Import Process

The import process is invoked in the eTariff software through the <File><MS Word Interface
Import> command.

1) the user selects the “MS Word Interface Import”
2) the user enters the Tariff name1
3) the user selects the directory (folder) and the .DBF file
4) the system performs the verification checks mentioned above and report accordingly
5) the system steps through the ‘definition’ file, adding records into the new tariff based

1 The point of contact information may be entered for this tariff at this time. But it is not

necessary. OMTR recommends that users treat this “named” tariff as a working document.
Once final edits are made, then either copy the finished tariff into a newly named tariff or rename
the tariff in preparation for filing with the Commission.

Extraction Applications and eTariff 4

on information in the ‘definition’ file
6) the system generates additional needed data during the import process (e.g. internally
generated data items)
7) the system displays the appropriate response/report as a result of the import process

During the import process, the following will be checked to verify the import format:

1) the field names in the definition file
2) the fields are of the correct data type
3) all fields for each record must have values
4) no duplicate sect_id values
5) every parent_id value exists (or is 0 – zero) in the provided sect_id values
6) every file listed in the assoc_file field exists (in same directory as the definition file)

If any of these criteria are not met, the import process will be halted. A brief message/report will
inform the user which record(s) caused the problem.

Extraction Applications

Each company’s tariff is maintained using various office applications and will have a unique
organizational formats. For this reason a custom extraction application will be required for each
document’s software and organizational format.

FERC will not provide or write these extraction programs. There are too many different
software formats and every tariff document has a unique organizational structure. However,
OMTR has created some examples that companies’ IT departments may wish to adapt to their
electronic software and tariff organizational formats.

Example Extraction Application Detailed Design

An extraction application must perform two major functions:

(1) Parse a tariff by section, create a Word file for that section, and paste, name and
save the Word file;

(2) Insert the relevant section and Word File information in a Foxpro database
readable by the eTariff software.

The parsing function is the most difficult part of the extraction application to write. Tariffs come
in a wide range of organizational formats (I.A.1.a.i, 1.1.1.1, etc.). Further, many older tariffs
contain different organizational formats within the same document. In addition, style and font
formats can vary. To reduce the coding effort, OMTR recommends that, as with the case of
hand-coping and pasting into eTariff, first standardize formatting and styles. Then focus on what
feature of the tariff is repeatable and is a predictable indication of a “section.” Edit accordingly
to introduce those features into areas that that deserve to be a section.

With an edited tariff, the parsing function of the extraction application can be written.

Extraction Applications and eTariff 5

On the Appendix are OMTR’s VBA codes for parsing and creating the database for importing
the parsed tariff into eTariff. They were written by Casey Nutsch, OMTR,
mailto:casey.nutsch@ferc.gov. They can be used as model for other Word documents and other
software formats such as Excel. Users of any extraction application should not expect 100%
accurate results. The more reasonable objective is to get most of the tariff into eTariff, and then
clean it up using the text and section-level editing tools available in eTariff.

Neither OMTR nor the Commission will support these macros. They are only presented to
provide guidance for those who wish to automate the tariff conversion process. If these macros
are used, neither OMTR, the Commission or its staff takes any responsibility for its use,
application or results.

The examples are not the only way to create a database for importing a parsed tariff into the
eTariff software. And we are sure many innovations and technical improvements could be made
to the example we have created. Further, OMTR’s experience is that any tariff up to 300 to 400
pages can be converted by hand in less time than it takes to write and error-check an extraction
application.

Running one of the example extraction programs on a large tariff file results in a set of
documents such as those shown below:

Extraction Applications and eTariff 6

The imported tariff from this data set appears as shown below in the eTariff software. Section 12
has been opened to show how the extraction program can find and locate sub-sections:

Extraction Applications and eTariff 7

Appendix

[Note that this document’s PDF file was created using the Adobe print add-in for Word. Thus the following code can be copied and pasted as text
from this PDF document.]

Example #1: VBA Code for Parsing a Word-formatted tariff into the eTariff database format for automated
importing
This example uses VBA and ADODB to pull out each section of the tariff and to put it into the correct format for the eTariff Import Interface
guidelines. The test Word document in this case does not use numbered paragraphs. It finds each section number by searching the beginning of
each paragraph for a numeric digit of a “.”. this same logic could be used in a text document scenario.

Option Explicit
'Declare the connection object
'NOTE: Before you can use the connection and recordset objects
'You must set a Reference to the ADODB object library
Dim myconn As ADODB.Connection
Private Sub SearchThru()
'This sub cycles through all the paragraphs in the document,
'picking out the section numbers and section titles, etc.

Dim mypara As Paragraph
Dim mynewfile As Word.Document, myfile As Word.Document
Dim connstr As String, mystr As String
Dim i As Integer, j As Integer
Dim sectnum As String, assocfile As String, parent_sec As String
Dim sect_id As Integer, parent_id As Integer
Dim paratext As String, prevfile As String, secttitle As String, newtext As String
Dim mypath As String

'Set the path
'Everything should reside in this directory
mypath = "D:\ImporteTariff\"

'Build the connection string
connstr = "Provider=vfpoledb;Data Source=D:\ImporteTariff\Word2eTariff.dbf;"

Set myconn = New ADODB.Connection 'set the object
myconn.Open connstr 'open the connection

'NOTE: The provider connection

'Set id vars
parent_id = 0
sect_id = 1

Extraction Applications and eTariff 8

For Each mypara In ThisDocument.Paragraphs 'loop thru paragraph collection

 sectnum = "" 'reset vars for each iteration
 assocfile = ""

 'Clean the string
 If mypara.Range.Words.Count > 2 Then
 paratext = CleanString(mypara.Range.Text)
 Else
 'if the string isn't more than 2 chars then move on
 paratext = mypara.Range.Text
 End If

 'Sift thru the paragraph text 1 char at a time
 'searching for a numeric value or a "."
 For i = 1 To Len(paratext)
 If IsNumeric(Mid(paratext, i, 1)) Or Mid(paratext, i, 1) = "." Then

 Else 'no more dots or numbers
 'for paragraph without a section #
 'belongs to previous paragraph
 If i = 1 Then 'no section number, append to previous
 Set myfile = Documents.Open(mypath & prevfile) 'open the previous document
 myfile.Range.Text = myfile.Range.Text & paratext 'put text from existing document
 myfile.Save 'save the changes
 myfile.Close 'close the file
 Exit For 'break out of the For loop since our work is done here
 Else ' section number exists let's write to db
 sectnum = Left(paratext, i - 1) 'assign the section number

 'just in case it doesn't end in a "."
 If Right(sectnum, 1) <> "." Then
 sectnum = sectnum & "."
 End If

 'Find parent section
 If Len(sectnum) > 2 Then
 For j = Len(sectnum) - 1 To 1 Step -1
 If Mid$(sectnum, j, 1) = "." Then
 'found second "."
 parent_sec = Left(sectnum, j)
 'Look up the parent id
 parent_id = LookupParent(parent_sec)
 Exit For
 End If
 Next j
 Else
 'must be a top level
 parent_id = 0
 End If

Extraction Applications and eTariff 9

 'Get title if it is present
 'All titles are bold in our test tariff

 If mypara.Range.Bold = True Or mypara.Range.Bold = "9999999" Then
 'secttitle = Right(mypara.Range.Text, Len(mypara.Range.Text) - i)
 secttitle = CleanString(Right(mypara.Range.Text, Len(mypara.Range.Text) - i))
 End If

 Set mynewfile = Documents.Add 'Create new document
 mynewfile.Range.Text = paratext 'Put text in new document

 mynewfile.SaveAs FileName:=mypath & sect_id & ".DOC" 'save file

 mynewfile.Close 'close file
 prevfile = sect_id & ".DOC"

 assocfile = sect_id & ".DOC" 'set filename of doc based on the section number

 'Write into database
 mystr = "INSERT INTO Word2eTariff (assoc_file, sect_id, parent_id, sect_num, sect_title) VALUES ('" & assocfile & "', " & sect_id & ", " & parent_id & ", '" & sectnum & "', '" & secttitle & "')"
 'MsgBox mystr
 myconn.Execute mystr

 sect_id = sect_id + 1 'Increment section ID

 Exit For
 End If

 End If

 Next i

Next mypara

End Sub
Private Function LookupParent(parent_sec As String) As Integer
'This function looks up the section id of a parent section
'The return value of this function will be used for the parent_id field of a new row

Dim myrst As ADODB.Recordset 'create a recordset to store rows for look up
'execute the SELECT statement, all rows will be returned in the recorset object
Set myrst = myconn.Execute("SELECT sect_id, sect_num FROM Word2eTariff")

'Loop thru the recordset and match parent_sec with sect_num
'and return the sect_id when found.
Do While Not myrst.EOF
 If Trim(myrst!sect_num) = Trim(parent_sec) Then
 LookupParent = myrst!sect_id 'return the sect_id

Extraction Applications and eTariff 10

 Set myrst = Nothing
 Exit Function
 End If
 myrst.MoveNext 'move to the next record
Loop

MsgBox "Error! Could not find section id to reference the parent id."

Set myrst = Nothing 'destroy objects = a good practice
LookupParent = 0 'return 0 if an error occurs; 0 = a top level section with no parent

End Function
Private Function CleanString(mystr As String) As String

'This function strikes all the chars that are non alpha and non numeric
'from the left and the right of the string that is the current paragraph.
'It returns a clean string.
'Otherwise how can you test to see if the beginning chars are
'section numbers if the paragraph starts with an Indent or Tab char or whatever.

'Dim i As Integer 'char counter
Dim done As Boolean 'flag variable

mystr = Trim(mystr) 'Trim spaces from left and right

'Clean Left side of the string
Do Until Asc(Left(mystr, 1)) > 33 And Asc(Left(mystr, 1)) < 126
 mystr = Right(mystr, Len(mystr) - 1)
Loop

'Clean Right side of the string
Do Until Asc(Right(mystr, 1)) > 33 And Asc(Right(mystr, 1)) < 126
 mystr = Left(mystr, Len(mystr) - 1)
Loop

'Return the cleaned string
CleanString = mystr

End Function

Private Sub ViewDB()
'This sub was used to quickly view the records that have been added to the database
'Viewing the table in FoxPro is ideal. MS Access can also be used to view the records
'but only after converting the FoxPro table to Access (.MDB)

Dim myrst As ADODB.Recordset
Dim myconn As ADODB.Connection
Dim connstr As String

Extraction Applications and eTariff 11

Set myconn = New ADODB.Connection 'create connection object
connstr = "Provider=vfpoledb;Data Source=D:\ImporteTariff\Word2eTariff.dbf;"
myconn.Open connstr 'open the connection

'Select all records for viewing
Set myrst = myconn.Execute("Select * FROM Word2eTariff")

'Loop thru and display each record using a message box.
Do While Not myrst.EOF
 MsgBox myrst!sect_id & " -- " & myrst!parent_id & " -- " & myrst!sect_num & " -- " & myrst!assoc_file
 myrst.MoveNext
Loop

End Sub

Example #2:
VBA Code for Parsing a Word-formatted tariff w/numbered paragraphs into the eTariff database format for
automated importing
This example uses VBA and ADODB to pull out each section of the tariff and to put it into the correct format for the eTariff Import Interface
guidelines. The test Word document in this case includes numbered paragraphs. It finds each section number by searching the beginning of each
paragraph for a “listed” number. Any paragraph without a number gets appended to the previous section.
Option Explicit
'Declare the connection object
'NOTE: Before you can use the connection and recordset objects
'You must set a Reference to the ADODB object library
Dim myconn As ADODB.Connection

Private Sub SearchThru()
'This sub cycles through all the paragraphs in the document,
'picking out the section numbers and section titles, etc.

Dim mypara As Paragraph
Dim mynewfile As Word.Document, myfile As Word.Document
Dim connstr As String, mystr As String
Dim i As Integer, j As Integer, dots As Integer
Dim sectnum As String, assocfile As String, parent_sec As String
Dim sect_id As Integer, parent_id As Integer
Dim prevfile As String, secttitle As String, newtext As String
Dim mypath As String

'Set the path
'Everything should reside in this directory
mypath = "K:\ImporteTariff\"

'Build the connection string

Extraction Applications and eTariff 12

connstr = "Provider=vfpoledb;Data Source=K:\ImporteTariff\Word2eTariff.dbf;"

Set myconn = New ADODB.Connection 'set the object
myconn.Open connstr 'open the connection

'Set id vars
parent_id = 0
sect_id = 1

For Each mypara In ThisDocument.Paragraphs 'loop thru paragraphs collection
 sectnum = "" 'reset vars for each iteration
 assocfile = ""

 'Test for ListParagraph
 If mypara.Range.ListFormat.ListType > 0 Then 'it's a ListParagraph of some sort
 sectnum = mypara.Range.ListFormat.ListString

 'just in case it doesn't end in a "."
 If Right(sectnum, 1) <> "." Then
 sectnum = sectnum & "."
 End If

 'if 1 dot only then it's a parent
 dots = 0 'reset for each iteration
 'count the dots
 For j = 1 To Len(sectnum)
 If Mid$(sectnum, j, 1) = "." Then
 dots = dots + 1
 End If
 Next j

 'Find parent section
 If dots > 1 Then
 For j = Len(sectnum) - 1 To 1 Step -1
 If Mid$(sectnum, j, 1) = "." Then
 'found second "."
 parent_sec = Left(sectnum, j)
 'Look up the parent id
 parent_id = LookupParent(parent_sec)
 Exit For
 End If
 Next j
 Else
 'must be a top level
 parent_id = 0
 End If

 If mypara.Range.Bold = True Or mypara.Range.Bold = "9999999" Then '9999999 = mixed

Extraction Applications and eTariff 13

 secttitle = CleanString(mypara.Range.Text)
 End If

 Set mynewfile = Documents.Add 'Create new document
 'mynewfile.Range.Text = CleanString(mypara.Range.Text) 'Clean String & put text in new document

 mynewfile.SaveAs FileName:=mypath & sect_id & ".DOC" 'save file

 mynewfile.Close 'close file
 prevfile = sect_id & ".DOC"

 assocfile = sect_id & ".DOC" 'set filename of doc based on the section number

 'Write into database
 mystr = "INSERT INTO Word2eTariff (assoc_file, sect_id, parent_id, sect_num, sect_title) VALUES ('" & assocfile & "', " & sect_id & ", " & parent_id & ", '" & sectnum & "', '" & secttitle & "')"
 myconn.Execute mystr

 sect_id = sect_id + 1 'Increment section ID

 Else 'append to previous doc
 Set myfile = Documents.Open(mypath & prevfile) 'open the previous document

 myfile.Range.Text = myfile.Range.Text & mypara.Range.Text 'put text from existing document
 myfile.Save 'save the changes
 myfile.Close 'close the file
 End If
Next mypara

End Sub
Private Function LookupParent(parent_sec As String) As Integer
'This function looks up the section id of a parent section
'The return value of this function will be used for the parent_id field of a new row

Dim myrst As ADODB.Recordset 'create a recordset to store rows for look up
'execute the SELECT statement, all rows will be returned in the recorset object
Set myrst = myconn.Execute("SELECT sect_id, sect_num FROM Word2eTariff")

'Loop thru the recordset and match parent_sec with sect_num
'and return the sect_id when found.
Do While Not myrst.EOF
 If Trim(myrst!sect_num) = Trim(parent_sec) Then
 LookupParent = myrst!sect_id 'return the sect_id
 Set myrst = Nothing
 Exit Function
 End If
 myrst.MoveNext 'move to the next record
Loop

MsgBox "Error! Could not find section id to reference the parent id."

Extraction Applications and eTariff 14

Set myrst = Nothing 'destroy objects = a good practice
LookupParent = 0 'return 0 if an error occurs; 0 = a top level section with no parent

End Function

Private Function CleanString(mystr As String) As String

'This function strikes all the chars that are non alpha and non numeric
'from the left and the right of the string that is the current paragraph.
'It returns a clean string.
'Otherwise how can you test to see if the beginning chars are
'section numbers if the paragraph starts with an Indent or Tab char or whatever.

mystr = Trim(mystr) 'Trim spaces from left and right

'Clean Left side of the string
Do Until Asc(Left(mystr, 1)) > 33 And Asc(Left(mystr, 1)) < 126
 mystr = Right(mystr, Len(mystr) - 1)
Loop

'Clean Right side of the string
Do Until Asc(Right(mystr, 1)) > 33 And Asc(Right(mystr, 1)) < 126
 mystr = Left(mystr, Len(mystr) - 1)
Loop

'Return the cleaned string
CleanString = mystr

End Function
Private Sub makebold()

'This subroutine steps thru all the "listed' paragraphs in a word document
'and makes it bold. This is how I bolded all the titles in the document
Dim numpar As Paragraph

For Each numpar In ThisDocument.ListParagraphs
 numpar.Range.Bold = True
Next numpar

End Sub
Private Sub ViewDB()
'This sub was used to quickly view the records that have been added to the database
'Viewing the table in FoxPro is ideal. MS Access can also be used to view the records
'but only after converting the FoxPro table to Access (.MDB)

Dim myrst As ADODB.Recordset
Dim myconn As ADODB.Connection
Dim connstr As String

Set myconn = New ADODB.Connection 'create connection object

Extraction Applications and eTariff 15

connstr = "Provider=vfpoledb;Data Source=K:\ImporteTariff\Word2eTariff.dbf;"
myconn.Open connstr 'open the connection

'Select all records for viewing
Set myrst = myconn.Execute("Select * FROM Word2eTariff")

'Loop thru and display each record using a message box.
Do While Not myrst.EOF
 MsgBox myrst!sect_id & " -- " & myrst!parent_id & " -- " & myrst!sect_num & " -- " & myrst!assoc_file
 myrst.MoveNext
Loop

End Sub

Example #3:
VBA Code for Parsing a Excel-formatted tariff into the eTariff database format for automated importing
This example uses VBA and ADODB to pull out each section of the tariff and to put it into the correct format for the eTariff Import Interface
guidelines. It finds each section number by searching the beginning of each paragraph for a “listed” number. Any paragraph without a number
gets appended to the previous section.

Option Explicit
Dim myconn As ADODB.Connection
Dim wd As Word.Application
Private Sub GetData()
Dim mynewfile As Word.Document

Dim i As Integer, j As Integer
Dim connstr As String, mystr As String, mypath As String, lastsection As String
Dim sectnum As String, assocfile As String
Dim prevfile As String, secttitle As String, newtext As String
Dim sect_id As Integer

'Set path
mypath = "K:\ImporteTariff\Test4\"

'create connection string
connstr = "Provider=vfpoledb;Data Source=K:\ImporteTariff\Test4\word2etariff.dbf;"

Set myconn = New ADODB.Connection 'create the connection object
myconn.Open connstr 'open the table

Set wd = New Word.Application
sect_id = 1
i = 10 'make it start at 11

'get data

Extraction Applications and eTariff 16

Do
 i = i + 1 'row counter
 sectnum = ThisWorkbook.Worksheets("PAGE1").Cells(i, 1)

 If sectnum = "END" Then 'break out at the end
 Exit Do
 End If

 If sectnum <> "" Then
 Set mynewfile = wd.Documents.Add
 'sectnum = mystr

 If Right(sectnum, 1) <> "." Then
 sectnum = sectnum & "."
 End If

 For j = 2 To 15 'check accross the sheet for any data
 If ThisWorkbook.Worksheets("PAGE1").Cells(i, j) <> "" Then
 newtext = newtext & " " & ThisWorkbook.Worksheets("PAGE1").Cells(i, j)
 End If
 Next j

 mynewfile.Range.Text = newtext
 mynewfile.SaveAs Filename:=mypath & sect_id & ".doc"
 assocfile = sect_id & ".doc"
 prevfile = sect_id & ".doc"
 mynewfile.Close

 'Write into database
 mystr = "INSERT INTO Word2eTariff (assoc_file, sect_id, parent_id, sect_num, sect_title) VALUES ('" & assocfile & "', " & sect_id & ", 0, '" & sectnum & "', '<no title>')"
 myconn.Execute mystr

 sect_id = sect_id + 1

 Else 'append previous section

 For j = 2 To 15 'check accross the sheet for any data
 If ThisWorkbook.Worksheets("PAGE1").Cells(i, j) <> "" Then
 newtext = newtext & " " & ThisWorkbook.Worksheets("PAGE1").Cells(i, j)
 End If
 Next j

 If newtext <> "" Then
 Set mynewfile = wd.Documents.Open(mypath & prevfile)
 mynewfile.Range.Text = mynewfile.Range.Text & newtext
 mynewfile.Save
 mynewfile.Close
 End If

 End If

Extraction Applications and eTariff 17

newtext = ""
mystr = ""

Loop

Call PageTwo(sect_id)

myconn.Close
Set mynewfile = Nothing
Set myconn = Nothing
Set wd = Nothing

End

End Sub
Private Sub PageTwo(lastsect_id As Integer)
 Dim i As Integer 'row counter
 Dim mystr As String, newsect As String, assocfile As String
 Dim mypath As String, secttitle As String, lastsection As String
 Dim mynewfile As Word.Document

 secttitle = ThisWorkbook.Worksheets("PAGE 2").Cells(3, 2)
 lastsection = "11."
 mypath = "K:\ImporteTariff\Test4\"

 'build string of data
 Do
 i = i + 1
 If ThisWorkbook.Worksheets("PAGE 2").Cells(i, 6) = "END" Then
 Exit Do
 ElseIf ThisWorkbook.Worksheets("PAGE 2").Cells(i, 6) <> "" Then
 mystr = mystr & " " & ThisWorkbook.Worksheets("PAGE 2").Cells(i, 6)
 End If
 Loop

 Set mynewfile = wd.Documents.Add
 mynewfile.Range.Text = mystr
 mynewfile.SaveAs Filename:=mypath & lastsect_id & ".doc"
 assocfile = lastsect_id & ".doc"
 mynewfile.Close

 'Write into database
 mystr = "INSERT INTO Word2eTariff (assoc_file, sect_id, parent_id, sect_num, sect_title) VALUES ('" & assocfile & "', " & lastsect_id & ", 0, '" & lastsection & "', '" & secttitle & "')"
 myconn.Execute mystr

 Set mynewfile = Nothing
 'Set wd = Nothing
 'myconn.Close

Extraction Applications and eTariff 18

End Sub
Private Function CleanString(mystr As String) As String

'This function strikes all the chars that are non alpha and non numeric
'from the left and the right of the string that is the current paragraph.
'It returns a clean string.
'Otherwise how can you test to see if the beginning chars are
'section numbers if the paragraph starts with an Indent or Tab char or whatever.

mystr = Trim(mystr) 'Trim spaces from left and right

'Clean Left side of the string
Do Until Asc(Left(mystr, 1)) > 33 And Asc(Left(mystr, 1)) < 126
 mystr = Right(mystr, Len(mystr) - 1)
Loop

'Clean Right side of the string
Do Until Asc(Right(mystr, 1)) > 33 And Asc(Right(mystr, 1)) < 126
 mystr = Left(mystr, Len(mystr) - 1)
Loop

'Return the cleaned string
CleanString = mystr

End Function
Private Sub ViewDB()
'This sub was used to quickly view the records that have been added to the database
'Viewing the table in FoxPro is ideal. MS Access can also be used to view the records
'but only after converting the FoxPro table to Access (.MDB)

Dim myrst As ADODB.Recordset
Dim myconn As ADODB.Connection
Dim connstr As String

Set myconn = New ADODB.Connection 'create connection object
connstr = "Provider=vfpoledb;Data Source=K:\ImporteTariff\Test4\Word2eTariff.dbf;"
myconn.Open connstr 'open the connection

'Select all records for viewing
Set myrst = myconn.Execute("delete FROM Word2eTariff")
End

'Loop thru and display each record using a message box.
Do While Not myrst.EOF
 MsgBox myrst!sect_id & " -- " & myrst!parent_id & " -- " & myrst!sect_num & " -- " & myrst!assoc_file
 myrst.MoveNext
Loop

End Sub

Extraction Applications and eTariff 19

